
Appendix B

Formal Definition of a Vector
Space

In classical physics and engineering, we generally work with simple three-
component position, velocity and acceleration vectors consisting of a triple
of real numbers. The concept of a vector space is however much more general
than this. Strictly speaking, we should refer to a ‘vector space over a field.’
Here are the properties:

We need a field S (e.g., a set of objects like the real numbers or the
complex numbers on which two operations, multiplication and addition are
defined). The elements of the field are called scalars.

The vectors are a set of objects {V } with two operations:

addition, so that for ωv1,ωv2 → {V }, ωv1 +ωv2 is also in {V } (closure under
addition).

multiplication by a scalar. If s → S then sωv1 → {V } (closure under
scalar multiplication).

The following eight properties must be satsified:

1. (ωv1 + ωv2) + ωv3 = ωv1 + (ωv2 + ωv3) (addition is associative)

2. ωv1 + ωv2 = ωv2 + ωv1 (addition is commutative)

3. ↑ω0 → {V } such that ω0 + ωv = ωv (additive identity exists)

4. ↓ωv → {V }, ↑ ↔ ωv → {V } such that ωv + (↔ωv) = ω0. (additive inverse
exists)

211

APPENDIX B. FORMAL DEFINITION OF A VECTOR SPACE 212

5. s(ωv1 + ωv2) = sωv1 + sωv2 (1st distribution law)

6. (s1 + s2)ωv = s1ωv + s2ωv (2nd distribution law)

7. s1(s2ωv) = (s1s2)ωv

8. 1(ωv) = ωv (where 1 is the multiplicative identity of the scalar field)

B.1 Basis Vectors and the Dimension of a
Vector Space

The dimension D of a vector space is the maximum number1 of linearly inde-
pendent vectors. Suppose that we have a set of vectors Q = {B1, B2, . . . , BN}
and we consider the function

F (s1, s2, . . . , sN) =
N∑

j=1

sjBj. (B.1)

The set Q of vectors is by definition linearly independent if the only solution
to the equation F (s1, s2, . . . , sN) = 0 is that all of its arguments vanish
(s1, s2, . . . , sN) = (0, 0, . . . , 0). If N > D there are too many vectors to all be
pointing in orthogonal directions and some of the vectors are redundant in
the sense that they can be expressed as linear combinations of other vectors.
In this case F = 0 has solutions for non-zero arguments of F .

A basis for a vector space of dimension D is a set of vectors Q =
{B1, B2, . . . , BD} which span the space. That is every vector V in the space
can be written as a (unique) linear combination of the basis vectors

V =
D∑

j=1

bjBj (B.2)

by choosing appropriate values for the set of scalars (coe!cients)
(b1, b2, . . . , bD). This list of coe!cients constitutes a representation of the
abstract vector V in this basis B.

1We consider here only the case where the Hilbert space dimension is finite (or at least
countable).

APPENDIX B. FORMAL DEFINITION OF A VECTOR SPACE 213

As a familiar example, the unit vectors

î = (1, 0, 0) (B.3)

ĵ = (0, 1, 0) (B.4)

k̂ = (0, 0, 1) (B.5)

can be used to form any position vector in ordinary three-dimensional space

ωr = (x, y, z) = xî+ yĵ + zk̂. (B.6)

These Cartesian coordinate basis vectors happen to be orthogonal (formally
defined below) because they are perpendicular in the usual geometric sense.
However a basis set is not required to be orthogonal, only complete.

B.2 Inner Products and Norms

For the ordinary vectors like positions and displacements (di”erences of po-
sition vectors) that we are used to the concept of the length (or ‘norm’) of a
vector defined in terms of Pythagorean theorem. If

ωA = (Ax, Ay, Az), (B.7)

then the norm is

| ωA| =
√

A2
x + A2

y + A2
z. (B.8)

The general definition of a norm for a vector space is (more or less) any
mapping from the vectors to the non-negative real numbers satisfying the
triangle inequality | ωA+ ωB| ↗ | ωA|+ | ωB|. It is important to note that a given
vector space need not have a norm defined.

For ordinary vectors we are used to the dot product

ωA · ωB = axBx + AyBy + AzBz = | ωA|| ωB| cos εAB, (B.9)

where εAB is the angle between the two vectors. The dot product is a specific
example of the general concept of an inner product. An inner product of two
abstract vectors V1 and V2 is a mapping onto a scalar s, often denoted

(V1, V2) = s. (B.10)

For the case where the vector space is defined over the field of complex
numbers, an inner product satisfies the following requirements:

APPENDIX B. FORMAL DEFINITION OF A VECTOR SPACE 214

Linearity in the second argument

(V1, aV2) = as, (B.11)

(V1, V2 + V3) = (V1, V2) + (V1, V3), (B.12)

Anti-linearity (conjugate linearity) in the first argument

(aV1, V2) = a
→(V1, V2), (B.13)

(V1, V2) = (V2, V1)
→
, (B.14)

Positive semi-definite

(V1, V1) ↘ 0 (B.15)

and

(V1, V1) = 0 =≃ V1 = ω0. (B.16)

[Note the first zero above is the scalar zero and the arrow is placed on
the second zero to make clear that this is the null vector (additive zero
vector) not the scalar zero.]

Two vectors are defined to be orthogonal if their inner product vanishes.

Exercise B.1. Prove that the usual dot product for real three-
dimensional vectors satisfies the definition of an inner product.

The Pythagorean norm defined above for ordinary real vectors is thus
related to the inner product of the vector with itself

| ωA| =
√

ωA · ωA. (B.17)

Exercise B.2. Prove that for a general complex vector space,
√
(V, V)

satisfies the definition of a norm.

In describing qubit states we will deal with two component complex val-
ued vectors of the form

#1 = (ϑ1, ϖ1), (B.18)

#2 = (ϑ2, ϖ2). (B.19)

APPENDIX B. FORMAL DEFINITION OF A VECTOR SPACE 215

The standard inner product and norm for such vectors are defined in Ex. B.3.

Exercise B.3. Prove that the following generalization of the dot prod-
uct to complex vectors satisfies the definition of an inner product

(!1,!2) = ω
→
1ω2 + ε

→
1ε2. (B.20)

and prove that

√
(!1,!1) =

√
ω
→
1
ω1 + ε

→
1
ε1. (B.21)

satisfies the definition of a norm.

B.3 Dirac Notation, Outer Products and Op-
erators for Single and Multiple Qubits

Physicists generally use a notation for complex state vectors and their inner
products that was developed by Paul Adrian Maurice Dirac. In this notation
the complex vector in Eq. (B.18) is represented as column vector instead of
a row vector using the ‘bracket’ notation

|#1⇐ =
(

ϑ1

ϖ1

)
, (B.22)

where |#1⇐ is referred to as a ‘ket’ vector and the inner product is represented
by

(#1,#2) = ⇒#1|#2⇐, (B.23)

where the ‘dual vector’

⇒#1| = (ϑ→
1
, ϖ

→
1
) , (B.24)

is a row vector representing the conjugate transpose of the column vector.
In this notation, the inner product is computed using the rules of matrix
multiplication

⇒#1|#2⇐ =
(ϑ→

1
, ϖ

→
1
)

(
ϑ2

ϖ2

)
= ϑ

→
1
ϑ2 + ϖ

→
1
ϖ2. (B.25)

APPENDIX B. FORMAL DEFINITION OF A VECTOR SPACE 216

The Dirac notation is also very convenient for defining the outer product
of two vectors which, as described in Chapter 3 is a linear operator that maps
the vector space back onto itself (i.e. maps vectors onto other vectors)

O = |#2⇐⇒#1|. (B.26)

Applying this operator to a vector |#3⇐ yields

O|#3⇐ = (|#2⇐⇒#1|) |#3⇐ = |#2⇐⇒#1|#3⇐ = |#2⇐ (⇒#1|#3⇐) = s13|#2⇐, (B.27)

where the scalar s13 is given by the inner product (also known in quantum
parlance as the ‘overlap’)

s13 = ⇒#1|#3⇐. (B.28)

Subsituting the definitions of of the bra and ket vectors in Eq. (B.26) we see
that the abstract operator can be represented as a matrix

O =

(
ϑ2

ϖ2

)
(ϑ→

1
, ϖ

→
1
)

=

(
ϑ2ϑ

→
1

ϑ2ϖ
→
1

ϖ2ϑ
→
1

ϖ2ϖ
→
1

)
. (B.29)

By simply switching the order of the row and column vector from that in
Eq. (B.25), the rules of matrix multiplication give us a matrix instead of a
scalar!

Exercise B.4. Use the matrix representation of O in Eq. (B.29) and
apply it to the column vector representation of |!3⇐

|!3⇐ =
(

ϑ

ϖ

)

to verify the last equality in Eq. (B.27.)

Recall that the adjoint of the product of two matrices is the product of
the adjoints in reverse order

(AB)† = B
†
A

†
. (B.30)

It works the same way in the Dirac notation for the outer product of two
vectors that forms an operator. Thus the adjoint of the operator in Eq. (B.26)
is simply

O† = |#1⇐⇒#2|. (B.31)

APPENDIX B. FORMAL DEFINITION OF A VECTOR SPACE 217

To see that this is true, it is best to work with the representation in Eq. (B.29)

O† =

[(
ϑ2

ϖ2

)
(ϑ→

1
, ϖ

→
1
)
]†

=

[(
ϑ2ϑ

→
1

ϑ2ϖ
→
1

ϖ2ϑ
→
1

ϖ2ϖ
→
1

)]†
, (B.32)

=

(
ϑ1

ϖ1

)
(ϑ→

2
, ϖ

→
2
)

=

(
ϑ1ϑ

→
2

ϑ1ϖ
→
2

ϖ1ϑ
→
2

ϖ1ϖ
→
2

)
, (B.33)

= |#1⇐⇒#2|. (B.34)

Tensor Products and Multiqubit States

The so-called tensor product of a pair of 2 ⇑ 2 matrices produces a 4 ⇑ 4
matrix

A⇓ B =

(
A11[B] A12[B]
A21[B] A22[B]

)
(B.35)

=




A11

(
B11 B12

B21 B22

)
A12

(
B11 B12

B21 B22

)

A21

(
B11 B12

B21 B22

)
A22

(
B11 B12

B21 B22

)



 . (B.36)

Such tensor products appear when dealing with the Hilbert space of two
qubits where the operator A acts on one qubit and operator B acts on the
other. This Hilbert space has dimension four and the states are represented
by column vectors of length four

|ϱ⇐ =





ϱ0

ϱ1

ϱ2

ϱ3



 . (B.37)

For the Hilbert space of n qubits, we will use the following Dirac notation
for state vectors and their duals in the computational basis

|ϱ⇐ = |bn↑1 . . . b2b1b0⇐ (B.38)

⇒ϱ| = ⇒bn↑1 . . . b2b1b0| (B.39)

in which the qubits are numbered from 0 to n↔1 and their values bj → {0, 1}
are ordered from right to left. (Note that we maintain this same label ordering
in the dual vector.) The computational basis is simply the tensor product

APPENDIX B. FORMAL DEFINITION OF A VECTOR SPACE 218

of the computational basis of the individual qubits (illustrated here for the
case of two qubits)

|00⇐ = |0⇐ ⇓ |0⇐ =
(

1
0

)
⇓
(

1
0

)
=





1
0
0
0



 (B.40)

|01⇐ = |0⇐ ⇓ |1⇐ =
(

1
0

)
⇓
(

0
1

)
=





0
1
0
0



 (B.41)

|10⇐ = |1⇐ ⇓ |0⇐ =
(

0
1

)
⇓
(

1
0

)
=





0
0
1
0



 (B.42)

|11⇐ = |1⇐ ⇓ |1⇐ =
(

0
1

)
⇓
(

0
1

)
=





0
0
0
1



 . (B.43)

Notice that if we label the ordinal positions in the column vector starting with
0 at the top and ending with 3 as in Eq. (B.37), then the binary representation
of the position of the entry containing 1 gives the state of the two qubits
in the computational basis. For example |11⇐ corresponds to the binary
representation of the number 3 which in turn corresponds to the location of
the entry 1 being at the bottom of the column vector in Eq. (B.43)

We can also write the dual vectors associated with the above two-qubit
state vectors. For example the dual of the vector in Eq. (B.41) is

⇒01| = ⇒0|⇓ ⇒1| =
(
1 0

)
⇓
(
0 1

)
=

(
0 1 0 0

)
. (B.44)

Recall from Eq. (B.30) for ordinary products of matrices we need to reverse
the order of the matrices when forming the transpose. However in forming
the dual of the tensor product |0⇐ ⇓ |1⇐, we do not reverse the order of the
two terms in the tensor product. This is because of our convention of keeping
the bit order the same when writing the dual of |01⇐ as ⇒01| rather than ⇒10|.

As examples of operators acting on this Hilbert space consider the joint

APPENDIX B. FORMAL DEFINITION OF A VECTOR SPACE 219

Pauli operators

Z ⇓X =





0 +1 0 0
+1 0 0 0
0 0 0 ↔1
0 0 ↔1 0



 , (B.45)

and

X ⇓ Z =





0 0 +1 0
0 0 0 ↔1
+1 0 0 0
0 ↔1 0 0



 . (B.46)

It is straightforward to verify that (for example)

(Z ⇓X)|10⇐ =





0 +1 0 0
+1 0 0 0
0 0 0 ↔1
0 0 ↔1 0









0
0
1
0



 = ↔





0
0
0
1



 (B.47)

is equivalent to (i.e., correctly represents)

(Z ⇓X)|10⇐ = (Z|1⇐)⇓ (X|0⇐) (B.48)

= (↔|1⇐)⇓ (|1⇐) (B.49)

= ↔|11⇐. (B.50)

Similarly

(X ⇓ Z)|10⇐ =





0 0 +1 0
0 0 0 ↔1
+1 0 0 0
0 ↔1 0 0









0
0
1
0



 =





1
0
0
0



 , (B.51)

is equivalent to

(X ⇓ Z)|10⇐ = (X|1⇐)⇓ (Z|0⇐) (B.52)

= (|0⇐)⇓ (+|0⇐) (B.53)

= +|00⇐. (B.54)

The above examples show us that the tensor product of two operators is
represented by a 4⇑4 matrix that can act on the column vector representing

APPENDIX B. FORMAL DEFINITION OF A VECTOR SPACE 220

the tensor product of two single qubit states. But we also see that this
is exactly equivalent to each operator acting separately on their respective
qubits and then taking the tensor product of the resulting state vectors. If
we want an operator that acts on only qubit q0 we simply tensor it with the
identity acting on q1. For example,

X0 = I ⇓X =





0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



 , (B.55)

whereas if we want the operator to act only on q1 we should use

X0 = X ⇓ I =





0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



 . (B.56)

It is important to note that the tensor product of two Pauli matrices is
not the most general form of two-qubit operator. For example, the CNOT
gate shown in Eq. (4.19) is a sum of four di”erent products of Pauli operators.

B.4 The Vector Space of Bit Strings

Computer and information science deals with bit strings and it turns out
that these form a vector space over a field. To see this, consider the set
of all possible bit strings ωx = (xn↑1xn↑2 . . . x2x1x0) of length n. Since every
element in the vector is a bit whose only allowed values are 0 and 1, we define
addition via

ωx⇔ ωy ↖ ωx+ ωy mod 2, (B.57)

where the mod 2 operation is performed bitwise. Strangely, this means that
every vector is its own additive inverse

ωx⇔ ωx = ω0. (B.58)

Similarly the only allowed scalars are s = 0, 1 because only for these values
are vectors of the form sωx in the space of bit strings. The set of scalars {0, 1}

APPENDIX B. FORMAL DEFINITION OF A VECTOR SPACE 221

together with the operations of ordinary multiplication and addition mod 2,
constitute a field. This binary field is traditionally denoted F2. Given these
facts, it is straightforward to verify that the criteria required for the set of
bit strings of length n to be a vector space over a field are all satisfied.

We can define an inner product on this vector space

ωx.ωy =


n↑1∑

j=0

xjyj


mod 2 = (ωx · ωy) mod 2, (B.59)

where ωx · ωy is the ordinary Euclidean dot product. (The inner product has
to be a scalar and there are only two allowed scalars which is why the mod
2 arithmetic is required in the inner product.) The ‘length’ of a vector
L
2 = L = ωx.ωx is thus the parity of the number non-zero bits in the string.

L = 0 if the vector contains an even number of 1’s and L = 1 if the vector
contains an odd number of 1’s.

This notion of ‘length’ does not give a very complete notion of the dis-
tance between two vectors. To remedy this one can define the notion of the
Hamming distance between two vectors

dH(ωx, ωy) =
n↑1∑

j=0

(xj ⇔ yj). (B.60)

Because xj ⇔ yj is zero if the two bits agree and one if they di”er, the
Hamming distance is the total number of instances where the bit strings
di”er. Equivalently it is the total number of bits in ωx that would need to be
flipped to convert ωx into ωy.

The notion of Hamming distance is very important in classical error cor-
rection, because the Hamming distance between a code word (a bit string in
the code space) and a word that has been corrupted by errors (bit flips) is
equal to the number of bitflip errors. These various notions of length and
distance are not to be confused with the ‘length’ n of a bit string in the
ordinary sense of the number of bits in the bit string vectors, which is the
dimension of the vector space.

Appendix C

Handy Mathematical Identities

Useful Information about the Mathematical Representation of
Qubit States and Operations

Standard basis states:

|0⇐ = | ↙⇐ =

(
1
0

)

|1⇐ = | ∝⇐ =

(
0
1

)
.

The representation of the basis states in the n̂ basis in terms of the stan-
dard basis states is

|+ n̂⇐ = cos

(
ε

2

)
|0⇐+ e

iω sin

(
ε

2

)
|1⇐

|↔ n̂⇐ = sin

(
ε

2

)
|0⇐ ↔ e

iω cos

(
ε

2

)
|1⇐

Standard basis states:

|0⇐ = | ↙⇐ =

(
1
0

)

|1⇐ = | ∝⇐ =

(
0
1

)
.

222

APPENDIX C. HANDY MATHEMATICAL IDENTITIES 223

The representation of the basis states in the n̂ basis in terms of the stan-
dard basis states is

|+ n̂⇐ = cos

(
ε

2

)
|0⇐+ e

iω sin

(
ε

2

)
|1⇐

|↔ n̂⇐ = sin

(
ε

2

)
|0⇐ ↔ e

iω cos

(
ε

2

)
|1⇐

where n̂ = (sin ε cosς, sin ε sinς, cos ε).

Pauli matrices:

X = φ
x =

(
0 +1
+1 0

)

Y = φ
y =

(
0 ↔i

+i 0

)

Z = φ
z =

(
+1 0
0 ↔1

)

I = φ0 =

(
+1 0
0 +1

)
.

Trace of Pauli matrices

TrX = TrY = TrZ = 0

TrI = 2.

Products of Pauli Matrices

X
2 = Y

2 = Z
2 = I

XY = ↔Y X = iZ

Y Z = ↔ZY = iX

ZX = ↔XZ = iY

XY Z = iI.

Commutators of Pauli matrices:

[X, Y] = XY ↔ Y X = 2iZ

[Y, Z] = Y Z ↔ ZY = 2iX

[Z,X] = ZX ↔XZ = 2iY.

APPENDIX C. HANDY MATHEMATICAL IDENTITIES 224

Anticommutators of Pauli matrices

{X, Y } = XY + Y X = 0

{Y, Z} = Y Z + ZY = 0

{Z,X} = ZX +XZ = 0.

Eigenstates of φx:

|±⇐ = 1′
2
[|0⇐± |1⇐] .

Eigenstates of φy:

| ± i⇐ = 1′
2
[|0⇐± i|1⇐] .

Euler-Pauli Identity: If A2 is the identity operator I (for any dimension
Hilbert space) then for real ε, eiεA = [cos ε]I + [i sin ε]A.

Rotation of qubit on Bloch sphere by an angle ↼ around the ↽̂ axis (recall
the right-hand rule)

Rϑ̂(↼) = e
↑iω2 ϑ̂·ϖϱ = cos(↼/2) Î ↔ i sin(↼/2) ↽̂ · ωφ.

Standard right-to-left ordering of multi-qubit states in the computational
basis |qn↑1, qn↑2, . . . , q2, q1, q0⇐. Generic two-qubit state is:

|#⇐ = ϱ00|00⇐+ ϱ01|01⇐+ ϱ10|10⇐+ ϱ11|11⇐ =





ϱ00

ϱ01

ϱ10

ϱ11



 .

In addition to the standard orthonormal computational basis states for
two qubits, {|00⇐, |01⇐, |10⇐, |11⇐}, another commonly used orthonormal basis
for two qubits are the so-called Bell states:

|B0⇐ =
1′
2
[|01⇐ ↔ |10⇐]

|B1⇐ =
1′
2
[|01⇐+ |10⇐]

|B2⇐ =
1′
2
[|00⇐ ↔ |11⇐]

|B3⇐ =
1′
2
[|00⇐+ |11⇐] .

APPENDIX C. HANDY MATHEMATICAL IDENTITIES 225

Handy trig identities:

cos(⇀) = cos2
(
⇀

2

)
↔ sin2

(
⇀

2

)

sin(⇀) = 2 sin

(
⇀

2

)
cos

(
⇀

2

)

sin

(
⇀

2

)
= ↔ sin

(
⇀

2

)
cos(⇀) + cos

(
⇀

2

)
sin(⇀)

cos

(
⇀

2

)
= sin

(
⇀

2

)
sin(⇀) + cos

(
⇀

2

)
cos(⇀)

sin(⇁/4) = cos(⇁/4) = 1/
′
2.

	Preface
	Introduction
	What is Information?
	Error Correction and Data Compression
	What is a computation?
	Universal Gate Sets

	Quantum Bits: Qubits
	Quantum Bits for Computer Scientists
	Quantum Bits for Budding Physicists

	Introduction to Hilbert Space
	Linear Operators on Hilbert Space
	Dirac Notation for Operators
	Orthonormal bases for qubit states
	Rotations in Hilbert Space
	Hilbert Space and Operators for Multiple Qubits

	Two-Qubit Gates and Multi-Qubit Entanglement
	Introduction: Multi-Qubit Operations and Measurements
	Multi-Qubit Measurements
	Two-Qubit Gates
	Bell Inequalities
	Quantum Dense Coding
	No-Cloning Theorem Revisited
	Quantum Teleportation
	YET TO DO:

	Algorithms and Complexity Classes
	Phase `Kickback' of a Controlled-Unitary Operation
	Exponentiation Gadget
	Quantum Oracles
	Deutsch Algorithm
	Deutsch-Jozsa Algorithm
	Bernstein-Vazirani Problem
	Simon's Algorithm
	Grover Search Algorithm
	VQE and QAOA Algorithms
	Phase Estimation Algorithm
	Quantum Fourier Transform

	Quantum Error Correction
	An advanced topic for the experts

	Yet To Do
	Quick Review of Probability and Statistics
	Randomness
	Probabilities
	Statistical Estimators
	Joint Probability Distributions

	Formal Definition of a Vector Space
	Basis Vectors and the Dimension of a Vector Space
	Inner Products and Norms
	Dirac Notation, Outer Products and Operators for Single and Multiple Qubits
	The Vector Space of Bit Strings

	Handy Mathematical Identities
	Suggestions for Projects
	Gates and Instruction Sets
	Efficient Representation of Quantum States
	Algorithms
	Quantum Error Correction and Fault Tolerance
	Quantum Communication and Security
	Quantum Complexity Classes
	Quantum Hardware Platforms

